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Abstract

We aim to arrange the terms of multinomial expansion in in Rn. This can be seen as a
generalization to the well-known Pascal’s Triangle. We show that with some constraints derived
from observations, there exists a way to arrange terms of multinomial terms in Rn. We further
show that there exists a bijection between sets of orthogonal matrices and the set of Multinomial
Pascal’s Triangle. Furthermore, the orbit of orthogonal matrix on Multinomial Pascal’s Triangle
generates the entire set of Multinomial Pascal’s Triangle

1 Introduction

(a+ b)0 = 1
(a+ b)1 = 1a+ 1b
(a+ b)2 = 1a2 + 2ab+ 1b2

(a+ b)3 = 1a3 + 3a2b+ 3ab2 + 1b3

(a+ b)4 = 1a4 + 4a3b+ 6a2b2 + 4ab3 + 1b4

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Pascal’s Triangle is a smart arrangement of terms of binomial expansions. Each nth row of the
triangle contains the coefficients of the binomial expansion of (a+ b)k. Normally, the variables a, b are
redacted for simplicity. The triangle has two basic interesting properties.

1. The arrangement is visually appealing

2. The value of the binomial coefficient is the sum of the two binomial coefficients directly above it.

I wondered if a similar representation can be made for coefficients of multinomial expansions. The
properties above, specifically ”visually appealing”, and ”above” is not really well defined. Let’s try to
define them so that we can use these definitions as constraints for Multinomial Pascal’s Triangle. I
will try to arrange multinomial terms in Rn.

Definition 1.1. A n-nomial Pascal’s Triangle is an arrangement of terms of (a1 + a2 + · · · an)k
for k ∈ N ∪ {0} in some Rm.

We will use words multinomial and n-nomial interchangeably, with the use of n-nomial when n has
to be chosen.

2 Defining Constraints

2.1 Explanation of visually appealing

The concept of ”visually pleasing” is ambiguous at best. One can say that the core quality of the
visually pleasing is that the arrangement of binomial terms forms an equilateral triangle. However,
this is not open to generalization to higher dimensions. Here are some basic observations.
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1. The terms are the same distance away from ”adjacent” terms.

2. The location of the term follows a grid-like structure.

Now let’s try to formulate these observations

Bound 1. We see that 2ab in the above Pascal’s Triangle is of the same distance to 1a, 1b, 1a2, 1b2, 3a2b, 3ab2.
These terms have the addition of a variable (ex: ab → a2b), deletion of a variable (ex: ab → b) and
substitution of variable (ex: ab → a2). We can define ’adjacent terms’ as terms that are the one
hamming distance away, and require that the distance to the adjacent terms to be same.

Bound 2. Let the position of a0b0 be the origin. Let’s define a⃗, b⃗ to be the vector from the origin to
the terms a, b. We see that a term with variables akbl is located at ka⃗+ l⃗b, creating a lattice.

In particular, bound 2 is a strict bound: The entire arrangement is determined by the initial vectors.

Definition 2.1. A Multinomial Pascal’s Triangle satisfying bound 2 is called Lattice Multinomial
Pascal’s Triangle.

2.2 Explanation of sum and ”above”

A numerical characteristic of Pascal’s Triangle is that the coefficient of the term is equal to the sum
of the two coefficients of the terms above. Before we get further, let’s define some terms.

2.2.1 Terms

In Pascal’s Triangle, we see that the terms of (a+ b)k form a line. Furthermore, the terms of (a+ b)k

can be said as located ”above” terms of (a+ b)k+1.

Definition 2.2. We denote the p-layer of n-nomial Pascal’s Triangle as the location of terms of
(a1 + a2 + · · · an)k

From the observation above, we can create a bound where each layer exists in a hyperplane of Rn,
and that the aboveness can be explained by the location in the line orthogonal to the hyperplane.

Bound 3. Let’s say that n-noimal Pascal’s Triangle is arranged in Rk. The p-layer of n-nomial
Pascal’s Triangle lies on a hyperplane of Rk.

Remark 1. Since 0-layer constitutes a single element, and thus can lie on any hyperplane, let’s limit
the hyperplane of the 0-layer to ones that are parallel to the 1-layer.

As a final bound, we would want to arrange Pascal’s Triangle in the lowest dimension possible.

Bound 4. If an arrangement of n-nomial terms complying with the bounds is feasible in Rk, then an
arrangement that require Rp for p > k is not considered a n-nomial Pascal’s Triangle.

2.2.2 Resolvation of Sums

In this subsection, we will show that if the arrangement of Multidimensional Pascal’s Triangle satisfies
the above three bounds, the property of the coefficient being the sum of the coefficients above is nicely
satisfied and arranged.

Definition 2.3. For a term k corresponding to axi
1 , ax2

2 , · · · axn
n , the terms that are directly above k are

terms that correspond to {axi
1 , ax2

2 , · · · axn
n /ai|1 ≤ i ≤ n}

Theorem 2.1. (
n

a1, a2, . . . , ak

)
=

k∑
i=1

(
n− 1

a1, . . . , ai − 1, . . . , ak

)
Proof. We can prove this by induction. However, there is a more intuitive proof for this. We see that(

n
a1,a2,...,ak

)
is the number of ways to divide n elements into k groups with ai elements in the ith group.

Let’s choose the first element and divide the cases depending on which group it goes to. If it goes to
the ith group, then we have n − 1 elements to divide into k groups with ai − 1 elements in the ith
group. This corresponds to the value of

(
n−1

a1,...,ai−1,...,ak

)
.
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Thus, the terms directly above term k have the sum of coefficients equal to the coefficient of k.

Remark 2. For any term a, the terms that are directly above a are adjacent to a and is located in a
layer above a.

Thus with the constraints, we get an arrangement where the sum property of coefficients is satisfied,
and the location of these summands are nicely located.

3 Existance of a Multinomial Pascal’s Triangle

Let’s now show that there exists an arrangement of multinomial terms that satisfy the above require-
ments.

First, let’s look at the formulation of the zeroth and the first layer. Since ||a⃗i|| have to have same
for all i, let’s set ||a⃗i|| = 1.

Also, for any i, j ∈ (1, 2, 3 · · ·n), i ̸= j, the following condition must be satisfied by constraint 1.

||ai|| = ||aj || = ||ai − aj ||
With the second cosine law, we can see that

||ai − aj ||2 = ||ai||2 + ||aj ||2 − 2||ai|||aj || · cos(aiaj)

1 = 1 + 1− 2 · ai · aj
||ai|||aj ||

1

2
= ai · aj

Let’s now show that such vectors an exist in Rn. Let’s formulate the vectors so that aj has values
only at the first j items.

We set a1 = [1, 0, 0, · · · 0]. Then we see that a2 has to have the first item as 1
2 since a1 · a2 = 1

2 .

The second item is forced to be ±
√
3
2 . For our job, let’s say that a2 = [ 12 ,

√
3
2 , 0, · · · 0].

Let’s try one more. for a3, the first two values are fixed from the dot product constraint. a3 =
[ 12 .

1√
12
, · · · ]. The third value is fixed from ||a3|| = 1.

With this method, creating a new ai is always possible. These vectors satisfy the first constraint.
Let’s formally prove this by induction

Theorem 3.1. Sequence of vectors that follow the following constraints

∀i, j ∈ [1, 2 · · ·n], ai · aj =
1

2

||ak|| = 1

Is possible to formulate for any n ∈ N.

Proof. Proof by induction. For the base case, we can set a1 = [1, · · · , 0]
Now let’s say that ak = [a1k, a

2
k · · · akk, 0, · · · , 0] and show that there exists ak+1 that satisfy the

bounds.

We can set ak+1 = [a1k, a
2
k · · · a

k−1
k , 1

2 −
∑k−1

i=1 (a
i
k)

2,±
√

1−
∑k

i=1(a
i
k+1)

2, · · · , 0].
We can prove that the dot product is always less than 1

2 and that ||ak+1|| < 1 and that we can find

akk+1 and ak+1
k+1.

Corollary 3.2. In Rn, if a1, a2, · · · an−1 is defined, then there are only two choices for an.

We have shown the existence of a set of vectors that satisfies the adjacent-same-distance constraint
for layer 0 and 1. These vectors in fact, when used in grid-like formulation, the set of vectors can be
used to define a n-nomial Pascal’s Triangle in Rn.

When using a grid-like structure, the distance between two adjacent terms is of form

||a⃗i||, ||a⃗i − a⃗j ||
Which is satisfied by the constraint on the first two layers.
Before constraint 3, let’s prove a simple observation
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Lemma 3.3. Any set of vectors ai that satisfies the Mutinomial Pascal’s Triangle must form a basis.

Proof. For the sake of contradiction, let’s say that ai do not form a basis, that without loss of generality,
there exists cis, where

n−1∑
i=1

ciai = an

Then

an · aj =
1

2

(

n−1∑
i=1

ciai) · aj =
1

2

1

2
cj +

n−1∑
i=1

ci
1

2
=

1

2

cj +

n−1∑
i=1

ci = 1

Also, we see that

an · an = 1

an ·
n−1∑
i=1

ciai = 1

n−1∑
i=1

ci
1

2
= 1

n−1∑
i=1

ci = 2

Thus we are left with an observation that cj = −1 for some j in i, . . . , n − 1. This means that∑n−1
i=1 ci = −(n− 1) ̸= 2. Thus there is a contradiction. ↓

Now let’s look at ka⃗1. We see that the location of terms in the kth layer is in a linear combination
of ai where i ∈ [2, 3, · · ·n]. since ak are linearly independent, layer lies in a unique hyperplane.

So there exists Multinomial Pascal’s Triangle that satisfies the constraints

Theorem 3.4. The n-nomial Pascal’s Triangle must exist in Rn.

Proof. From Lemma3.3, the lower bound of dimension is n. Furthermore, there exists a n-nomial
Pascal’s Triangle in Rn. Thus, by bound 4, all n-nomial Pascal’s Triangle must lie in Rn.

So for now on bound 4 means a more strict condition, that n-nomial Pascal’s Triangle lie in R⋉.

4 Generation of Lattice Multinomial Pascal’s Triangle

In the last section, we showed the existence of the multinomial Pascal’s Triangle that uses lattice
structure. In this section, we show that the generation of all of these Pascal’s Triangle is possible.

Lemma 4.1. If set of vectors {v1, v2, · · · , vn}, {w1, w2 · · ·wn} form a basis in Rn, then there exists a
matrix W such that W [v1, v2, · · · , vn] == [w1, w2, · · ·wn]

Proof. Change of Basis Theorem in Linear Algebra

Lemma 4.2. Given a basis for Lattice Multinomial Pascal’s Triangle, X and an orthogonal matrix
A, AX creates another basis for Lattice Multinomial Pascal’s Triangle
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Proof. Orthogonal matrix preserves relative angle and vector length. Thus, the new vectors AX also
satisfies the bounds.

Now, let us consider V = {v1, v2, · · · , vn}, W = {w1, w2 · · ·wn} where V,W are the vectors of
Lattice Multinomial Pascal’s Triangle. Then we see that any pair of vector q1, q2 and p1, p2 where
q1 = a1v1 + a2v2 · · ·+ anvn and p1 = a1w1 + a2w2 + · · ·+ anwn and q2, p2 likewise must satisfy

q1 · q2 = p1 · p2
.

Furthermore, since V,W form basis in Rn, there exists a change in basis matrix A. The change of
basis matrix has to satisfy q1W = p1, q2W = p2. Thus

q1 · q2 = q1A(q2A)T

q1q
T
2 = q1AAT qT2

Thus A is an orthonormal matrix.

Lemma 4.3. For any two basis of lattice multinomial pascal’s triangle, A,B, the change of basis
matrix W where WA = B is an orthonormal matrix.

Proof. Explanation above.

Theorem 4.4. An orbit of an orthonormal matrix with an element of basis of lattice n-nomial Pascal’s
Triangle generates the entire set of lattice n-nomial Pascal’s Triangle.

Proof. From Lemma 4.1, we see that there exists a change of basis matrix for every two elements in
the basis of lattice n-nomial Pascal’s Triangle. Furthermore, from Lemma 4.3, we showed that such
matrix have to be orthonormal. Thus, an orbit of orthonormal matrix with basis of lattice n-nomial
Pascal’s Triangle generates the entire set.

Theorem 4.5. There exists a bijection between the basis of lattice n-nomial Pascal’s Triangle and a
set of orthonormal matrices.

Proof. From 4.4, we see that the function from set of orthonormal matrices to the basis of lattice
Pascal’s Triangle is subjective.

The function is also injective as change of basis matrix is unique for each transformation.

5 Loosening Bounds

5.1 Uniqueness of binomial Pascal’s Triangle

We have shown all possible multinomial triangles that satisfy the three bounds. What happens if we
loosen the lattice-structure bound?

Well, then we see that there are multiple formulations for a ”possible” binomial Pascal’s Triangle

1a
1a 1b

1a2 (1a, 2ab) 1b2

1a 1b

1a2 (1a, 2ab) 1b2

1a3 (1a, 3a2b) (1b, 3ab2) 1b3

We can flip every layer of Pascal’s Triangle. However, this violates bound 3. In this section, we
show that when the first layer is fixed, there exists a unique Pascal’s Triangle following bounds 1,3,4

Definition 5.1. Initial Vectors of n-nomial Pascal’s Triangle is the vector from the origin to the
first layer.
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From Bound 1, and section 4, we show that these vectors form a basis in Rn.

Theorem 5.1. There exists a unique binomial Pascal’s Triangle given the initial vectors.

Proof. Layer 0 and layer 1 is fixed by the theorem proved above.
Let’s look at layer 1 and layer 2. layer 2 has three terms and is of dimension 1. There are two

possible configurations of layer 2. namely

a21 −−a1a2 −−a22
(a21, a

2
2)−−a1a2

We will show later why the second configuration is not possible. Let’s look at the first configuration
to start.

Then adding layer 2 to layer 1, we are faced with this particular problem.

a21

a1

a1a2

a2

a22

From the adjacentness constriant, every angle created by adjacent terms must be 60 degrees.
Furthermore, 2a1, a1a2, 2a2 form a line from constraint 3. We see that

(
−−−−−→
a21, a1a2 −

−−−→
a21, a1)

−−−→a1, a2 =
1

2
−−−−−→
a21, a1a2 · −−−→a1, a2 −

−−−→
a21, a1 · −−−→a1, a2 =

1

2
−−−−−→
a21, a1a2 · −−−→a1, a2 = 1

Thus
−−−−−→
a21, a1a2 and −−−→a1, a2 are parallel to each other.

First, notice that this implies that ∠(a21, a1a2, a2) = 120 degrees. iF a21 and a22 coincide in location,

|a2a22| > 1, showing that the second configuration is not applicable.

So we see that
−−−→
a21, a1 and −−→a1a2 is 60 degrees. In R2, there are only two possible values for

−−−→
a21, a1.

Specifically, one value is
−−→
a1, 0 and another is a reflection of the vector across a1a2. A similar argument

can be made of
−−−→
a22, a2.

Since terms a21, a1a2, a
2
2 must be in a line with distance 2, The vectors

−−−→
a21, a1,

−−−→
a22, a2 has to be both

headed towards the origin or both not headed towards the origin. If both of them are not headed
towards the origin, we have a violation of constraint 3. The origin coincides in a hyperplane formed
by a21, a1a2, a

2
2.

A similar argument can be made for adding other layers. In each layer, there is a unique way to
attach the layer to the triangle.

Thus, there is only one way to formulate a binomial Pascal’s Triangle.

5.2 Uniqueness of n-nomial Pascal’s Triangle

In this section, we show that in fact, even with the absence of bound 2, all n-nomial Pascal’s Triangle
is lattice n-nomial Pascal’s Triangle. Let’s first prove a lemma

Lemma 5.2. We can create a bijective mapping of terms of layers up to k of (n-1) Pascal’s Triangle.
to terms of k layer of n-nomial Pascal’s Triangle.

Proof. The mapping sends aj11 aj22 · · · ajn−1

n−1 to aj11 aj22 · · · ajn−1

n−1 a
k−

∑
ji

n .
The mapping is injective as the first n− 1 variable’s powers are conserved and the mapping is also

surjective as for any term of k layer of n-nomial Pascal’s Triangle, we can remove the last variable to
get a reverse mapping.

Lemma 5.3. The adjacent distance constraint (Bound 1) is preserved in the bijective mapping of
Lemma 5.2
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Proof. The adjacent terms can be categorized into addition, deletion, and substitution. For any item in
the domain, say aj11 aj22 · · · ajn−1

n−1 , Addition corresponds to substitution of an with ak for some k ≤ n−1.
Deletion corresponds to substitution of ak with an. Substitution corresponds to a substitution of ak, ai
for some k, i ≤ n− 1.

Both the k-layer of n-nomial Pascal’s Triangle and (n-1)-nomial Pascal’s Triangle has to lie in
Rn−1. From the lemmas above, k-layer of n-nomial Pascal’s Triangle has adjacentness constraint at
least as harsh as (n-1)-nomial Pascal’s Triangle. As k layer of n-nomial Pascal’s Triangle has to satisfy
adjacentness constraints from k + 1 and k − 1 layers, it has an additional constraint.

Let’s now prove a simple lemma

Lemma 5.4. There exists a unique kth layer of n nomial Pascal’s Triangle, that satisfies |aki akj | = k
for all i, j,

Proof. First, such constraints can be met by following the formulation of Pascal’s Triangle from section
3. Now for uniqueness, The formulation above forces the locations of any api a

q
j . This forces the location

of api a
q
ja

r
l which forces locations of terms with four variables. Continuing this argument till terms with

n variables shows that location of the terms are fixed.

This in fact, shows that if a layer satisfies |aki akj | = k for all i, j, that the layer follows same
formation of lattice Pascal’s Triangle.

We will show later, that all layers of Pascal’s Triangle have to follow this form. For now, let’s
assume that all layers of Pascal’s Triangle follow this form to show uniqueness of n-nomial Pascal’s
Triangle.

Theorem 5.5. Initial vectors uniquely define n-nomial Pascal’s Triangle, given that |aki akj | = k for
all k ∈ N.

Proof. We prove the following by induction.
We have already proven the uniqueness in 2-nomial Pascal’s Triangle. Now let’s assume that the

formulation of Pascal’s Triangle is unique to n-nomial and prove for (n+1)-nomial Pascal’s Triangle.
Notice that n-nomial Pascal’s Triangle is lattice Pascal’s Triangle.

We look at attaching kth layer of (n+1)-nomial Pascal’s Triangle. Consider connecting ak−1
i to aki

and ak−1
j to akj . Notice that ak−1

i , ak−2
i aj , · · · ak−1

j lies in line segment and aki , a
k−1
i aj · · · akj also lies in

a line segment.
Using a similar argument as 5.1, we can see that the two line segments are parallel to each other.

Thus vector
−−−−−→
aki , a

k−1
i must be 60 degrees from

−−−−−−−−−→
ak−1
i , ak−2

i aj .
We also notice that ak−1

i , has vectors pointing to ak−1
j for j ̸= i and j ∈ {1, 2, 3 · · ·n + 1}. These

vectors have to have a mutual dot product of 1
2 . the new vector

−−−→
aki , a

k
i must also have the same

condition as
−−−−−→
aki , a

k−1
i must be 60 degrees from

−−−−−−−−−→
ak−1
i , ak−2

i aj .
According to 3.2, 5.2, there are only two possible vectors in Rn+1 that satisfy this. namely a

vector of
−−−−−−−→
ak−1
i , ak−2

i and vector that is a reflection upon the hyperplane. As shown in 5.1, Since

aki , a
k−1
i aj · · · akj is a line segment of length k, the other

−−−−−→
akj , a

k−1
j must all either be

−−−−−−−→
ak−1
j , ak−2

j or all be

a reflection onto the hyperplane. If every
−−−−−→
akj , a

k−1
j is a reflection of

−−−−−−−→
ak−1
j , ak−2

j upon a hyperplane, then
it coincides with the k− 2 hyperplane and thus, there is only one way to add a layer to (n+1)-nomial
Pascal’s Triangle.

Furthermore, this addition satisfies the adjacency constraint between k and k − 1 layers as the
attachment is in fact, a lattice n-nomial Pascal’s Triangle.

We still need to prove that the only possible formulation for a layer of Pascal’s Triangle is that of
a lattice Pascal’s Triangle. The proof is surprisingly similar to 5.5.

Theorem 5.6. If the n-nomial Pascal’s Triangle follows constraint of lattice Pascal’s Triangle con-
straint until k − 1th layer, then the kth layer must follow condition of 5.4.
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Proof. for the kth layer, fix the location of ak1 and set it as the origin. Then allocation of the terms
where power add up to k is similar to the allocation of terms of n− 1 Pascal’s Triangle.

The only difference is the lack of constraint 3 and the addition of constraints from the terms of
k − 1th layer. The two constraints resolve to have the same effect.

Let’s define a l-sublayer as a subset of the k layer where terms include ak−l
1 (exclusive, does not

include a
k−(l−1)
1 and more). The formulation problem can be simplified as the task of attaching l + 1

sublayer to l.

Let’s focus on attaching ak−1
1 a2 to ak−2

1 a22. Notice that
−−−−−−−−−−−−→
ak−2
1 a22, a

k−2
1 a2aj must have mutual dot

product of 1
2 for all j.

With the same argument as 5.5, there are only two possible ways to attach ak−1
1 a2 to ak−2

1 a22. one
is to attach it with the same vector attaching ak1 to ak−1

1 x2 and the other is to attach it with the vector
reflected by hyperplane formed by the first layer.

The latter is not possible.
−−−−−−−−−→
ak−1
1 , ak−2

1 a2 has to be parallel to
−−−−−−−→
ak1 , a

k−1
1 a2 from the subproof of 5.5.

The other choice results in |
−−−−−−−−−−→
ak−2
1 a2, a

k−2
1 a22| > 1, violating bound 1.

Thus
−−−−−−−→
ak1 , a

k−1
1 a2 =

−−−−−−−−−−→
ak−1
1 a2, a

k−2
1 a22. Using the same argument, we show that the condition of 5.4

has to be met.

Theorem 5.7. Initial vectors uniquely define n-nomial Pascal’s Triangle.

Proof. From 5.6, we showed that given a lattice n-nomial Pascal’s Triangle up to k−1th layer, the next
layer has satisfy |aki akj | = k. 5.5 showed that attaching each layer is unique. Since every multinomial
Pascal’s Triangle up to layer 1 is a lattice multinomial Triangle, Every multinomial Pascal’s Triangle
is a lattice multinomial triangle. This implies that the initial vectors uniquely define the multinomial
Pascal’s Triangle.
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